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Abstract. The properties of random walks on a square lattice with multifractal distributions 
of site-residence probabilities have been explored using computer simulations. Random 
walks on such substrates have weLdefined fractal dimensionalities D, (obtained from the 
dependence of R 2  on N where R 2  is the mean square displacement from the origin and 
N is the number of steps in the walk) which are larger than two. Results obtained from 
these simulations indicate that more than two exponents ( D ,  and D, where D, is the 
fracton or spectral dimensionality) are needed to describe the properties of these walks. 
The algorithms used in this work provide a convenient way for generating walks with a 
fractal dimensionality greater than two and are being used to extend the scope of the 
diffusion-limited aggregation models. 

Knowledge of the properties of random walks provides a basis for understanding an 
extremely broad range of phenomena in physics, chemistry, biology and other areas. 
For this reason random walks have been intensively investigated throughout this 
century. In recent years, considerable attention has been focused on the properties of 
random walks on fractals (Mandelbrot 1982) and other non-Euclidean systems. This 
work has been motivated by the realisation that many of the unique properties of 
fractals are a direct consequence of the properties of random walks on these structures, 
which can be described in terms of scaling exponents such as the fractal dimensionality 
of the random walk and its fracton or spectral dimensionality (Alexander and Orbach 
1982). Here computer simulations are used to explore some of the properties of random 
walks on multifractal lattices which can be described in terms of an infinite family of 
scaling exponents and fractal dimensionalities (Mandelbrot 1974, 1982, Halsey er a1 
1986). 

The multifractal lattices used in this work are illustrated in figure 1. In the first 
stage of construction, four numbers (which may be regarded as probabilities) PI,  Pz, 
P3 and P4 are randomly associated with the four quadrants of a square lattice (figure 
l ( a ) ) .  In the next stage each of the quadrants is divided into four smaller quadrants 
and the probabilities associated with these quadrants are multiplied by PI, P2,  P, and 
P4 (in random order) (figure l (b)) .  Starting with a lattice containing 2“ x 2“ sites this 
process is continued for n generations until aprobability or measure ( ~ ( x ) )  is associated 
with each of the lattice sites. In general, the probability associated with a lattice site 
will have the form Pf PlP,” P i  with i + j  + k + 1 = n. Figure 1 ( c )  shows a typical example 
based on the generator PI = 1, P2 = 1, P3 = 0.5 and P4 = O S  with n = 9  generations 
(512x512 sites). In the limit n+m the procedure outlined above defines a fractal 
measure on the two-dimensional space which can be described in terms of a continuous 
spectrum of singularities of type a, each supported on a fractal subset with a fractal 
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dimensionality of f ( a )  (Halsey et al 1986). Multifractals of the type illustrated in 
figure 1 have been used for other purposes such as the description of turbulence 
(Mandelbrot 1974, Frisch et al 1978, Shertzer and Lovejoy 1983, Benzi er al 1984, 
Lovejoy and Schertzer 1986). 

For multifractals of the type used as substrates in this work, the function f ( a )  can 
be obtained from the asymptotic ( n  + C O )  form of the probability histogram. The 
simplest case P, = 1, Pz = R , ,  P3 = R , ,  P4 = R:  ( R3 < 1) leads to a log-binomial distribu- 
tion and in this case the function f ( a )  is given by 

g(x)  = -4[x In x + (1 - x) In( 1 - x)]/ln 2 (1) 

f ( A ( x +  B)) = A x )  (2) 

for O < x < l  where 

with A = -2 In R,/ln 2 and B = -2 ln(1 + R,)/ln 2 (Meakin 1987). 
To explore the properties of random walks on these lattices, lattice sites (with 

coordinates i and j )  are selected at random with a probability proportional to the 
value of the probability measure ( p (  i , j ) )  associated with that lattice site. This provides 
an origin for the walk. The probability that the random walker will move into the 
nearest-neighbour site at ihe position ( k ,  I )  is equal to 1.0 if p ( k ,  l )  3 p (  i , j )  and is 
proportional to p(  k, l ) / p ( i , j )  if p ( k ,  I )  < p( i ,  j ) .  According to these rules the random 
walk corresponds to the trajectory of a particle in a standard Monte Carlo simulation 
(Metropolis et al 1953) which might be carried out to estimate the thermodynamic 
properties of the system. However, steps during which the particle does not move are 
not explicitly included. 

Simulations were carried out using two types of multifractal substrates (type I and 
type 11). For type I, PI = P2 = 1 and P3 = P4 = R I .  For type 11, PI = 1, P2 = R 2 ,  P3 = R: 
and P4 = R:. The simulations were carried out using two-dimensional square lattices 
containing 1024 x 1024 sites and 100 walks each containing 100 000 steps were carried 
out on each lattice. For each value of the parameter R I  (for type I lattices) or R2 the 
simulations were repeated approximately 600 times using different (randomly gener- 
ated) lattices. 

The exact enumeration method (Majid er a1 1984) could easily be adapted to these 
multifractal lattices. This method was not used because a large fraction of all possible 
walks have very low probabilities on the multifractal lattices and because it was believed 
to be more important to sample a large number of different multifractal lattices and 
different origins on these lattices than to enumerate all of the possible walks from a 
given origin. However, it is possible that the exact enumeration method could consider- 
ably reduce the statistical uncertainties a n d h i s  is a subject forfurther investigation. 

Figure 2 shows the dependence of In R2 on In N where R 2  is the mean square 
distance travelled by the random walker from its origin after N steps for several values 
of the parameter R I .  These log-log plots are almost perfectly linear (except for very 
small values of RI) .  From the definition of the random walk dimensionality, D,, 

(3) 
the values for D, given in table 1 were obtained. Figure 3 shows the dependence of 
the number of sites visited, N,, on the number of steps in the random walk. Here we 
have plotted In N ,  against ln(N/ln NI.  For a random walk on a two-dimensional 
lattice with uniform measure 

- 
R2 - N 2 ”  - N2/ Du 

N,- Nl ln  N (4) 
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Figure 1. Generation of the multifractal substrates. (a) The generator for the fractal 
measure. (b)  The second stage in the construction process. (c) The ninth stage for a 
512 x 512 lattice using the generator P, = P2 = 1, P3 = P4 = R. The density of points in each 
lattice site is proportional to the probability measure associated with that site. 
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Ln N 

Figure 2. Dependence of the mean square displacement of the random walkers from their 
origins as a function of the number of steps, N,  in the random walk. These results were 
obtained using substrates with a probability measure obtained from generators of the type 
PI = P2= 1,  P3= P4= R I .  

Table 1. Effective exponents obtained for random walks on multifractals of type I (PI = Pz = 
1 ,  P3 = P4 = R I )  for various values of R I .  

RI 2/ D, 5’ 5 w B 

I 

I 

1 

1 

1 

a 0.8641 0.886 0.796 1.245 0.773 

- 16 0.6447 0.663 0.587 1.401 0.472 
- 32 0.5534 0.574 0.515 1.603 0.384 
M 0.4926 0.514 0.462 1.727 0.295 

8 0.7514 0.771 0.693 1.332 0.587 

(Weiss and Rubin 1983). For values of R ,  which are close to 1 .O, plotting In N, against 
ln(N/ln N)  gives a more nearly linear behaviour than plotting In N, against In N. 
Under these conditions we find that 

N,-(N/ln N){’ ( 5 )  

and that 5’=2 /D, .  Since the corrections to the asymptotic scaling behaviour are not 
known, the dependence of In N, on In N has also been determined and effective values 
of the exponents 5’ and 5 defined by 

N,- N~ (6) 

are given in table 1 for walks of length l O O O S  N S 100 000 steps. 
It seems quite probable that equation (6) rather than equation ( 5 )  describes the 

asymptotic behaviour of these random walks (i.e. asymptotic logarithmic corrections 
occur only when the fractal dimensionality of the walk and the substrate are squal). 
Unfortunately, it is not possible to distinguish between equations ( 5 )  and (6) (or other 
forms for the corrections to scaling) on the basis of these simulations alone. 

The probability FN,  that once a site has been visited by the random walker it will 
first return to that site after N steps, has also been measured. Figure 4 shows the 
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Figure 3. Dependence of the total number of sites visited, N,, on the walk length, N ,  for 
random walks on multifractal substrates with generators of the type illustrated in figure 1 
with PI = P, = 1 and P, = P4 = R,, 
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Figure 4. This figure shows the dependence of In FN on In N for random walks on 
multifractal substrates of the type illustrated in figure 1 with P, = Pz = 1 and P3 = P4 = R I .  
FN is the probability that a random walker will first return to a previously occupied site 
after N steps. 

dependence of In FN on In N. For large N the results are consistent with an asymptotic 
scaling reaction of the form F N  - N-" and effective values for the exponent w (for 
1 0 0 0 ~  N s  10 000) are given in table 1. 

The probability G N  that a previously visited site will be revisited again after N 
steps has also been measured. In this case every return is counted, not just the first 
return. The simulation results are consistent with an asymptotic power law of the form 
G N  - N-?. The dependence of In G N  or In N is much more linear for small values 
of R I  or R2 than it is for large values (similar behaviour is shown for FN in figure 4). 
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The values given for 7 in tables 1 and 2 were obtained by least squares fitting straight 
lines to the dependence of In G N  on In N over the range 1000 C N S 10 000 steps. 

Because significant corrections are expected, the exponents given in tables 1 and 
2 should be regarded as effective exponents for the range of length scales over which 
- they were measured. The best power-law behaviour was found for the dependence of 
R 2  on N and the values given for the corresponding exponent (0,) in tables 1 and 2 
are probably the most reliable. At present, the form of the corrections to scaling for 
the other quantities measured in this work is not known and a much more extensive 
study than that reported here would be needed to determine the nature of these 
corrections. 

Table 2. Effective exponents obtained for random walks on multifractals of type I 1  ( P I  = 1, 
P2 = R , ,  P3 = R : ,  P4 = R : )  for various values of R , .  

3 

1 

1 

I 

1 

a 0.9694 0.985 0.885 1.189 0.916 

4 0.5830 0.603 0.541 1.465 0.417 
s 0.4079 0.433 0.388 1.612 0.250 
- 16 0.3008 0.332 0.297 1.733 0.168 

2 0.8373 0.856 0.769 1.265 0.699 

The exponent 5 relating the number of sites visited to the number of steps in this 
walk is often expressed in terms of the spectral or fracton dimensionality as (Rammal 
and Toulouse 1983) 

5 = D,/2 or D, = 25. (7)  
The observation that 5 = 21 D, implies that D, = 4/ D, which with the definition 
D, = 2 0 1  D, gives D = 2 for the effective fractal dimensionality of the substrate. The 
spectral dimensionality can also be measured from the distribution of first returns to 
a previously visited site (Alexander and Orbach 1982, Rammal and Toulouse 1983). 
In this case the exponent w is related to D, by w = D,/2 or D, = 2w and this implies 
(with equation ( 5 ) )  that e =  w. It is clear from the results given in tables 1 and 2 that 
w # 5 (except in the limit R + 1 corresponding to an ordinary two-dimensional random 
walk). Consequently, it seems that more than two exponents (D, and D,, for example) 
are needed to describe these random walks. For a random walk on a fractal the 
exponent 7 which describes the probability of return to the origin after N steps should 
also be equal to 5 and w. 

To measure the exponent w a record is kept of the number of steps in the walk at 
which each of the sites was last visited. When a previously visited site is revisited N 
steps later, the contribution of this N-step 'loop' is added to F N  and the information 
concerning the number of steps in the walk at which this site was last visited is updated. 
The updating is stopped 10 000 steps before the end of the walks so as not to introduce 
a bias against long loops (less than 10000 steps long) which would not be finished 
before the walk had ended. A similar procedure was used to obtain G N  and the 
exponent 7. Now the site is identified by the step in the walk at which it was first 
visited and a contribution to G N  is added each time this site is revisited N steps after 
it was first visited. Unfortunately, this procedure distorts the shape of G N  since sites 
found for the first time early in the walk will tend to be those with high probabilities 
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and those visited for the first time towards the end of the walk will tend to have 
relatively low probabilities. The contribution of reference sites with low probabilities 
will be overemphasised. The effect of this bias is not clear, but it means that the results 
shown in tables 1 and 2 are not inconsistent with the idea that 7 = 5. 

A smaller distortion in the shapes of both FN and G, results from the fact that 
we have not taken into account the number of attempts which a random walker makes 
to move from a particular site before succeeding. However, it seems unlikely that this 
will be sufficient to change the asymptotic ( N  + a) dependence of FN or GN on N. 
However, it could be responsible for the deviations from linearity observed in the 
dependence of In FN or In N for large values of R (figure 4). 

The unusual properties of the random walks investigated here result from the 
multifractal correlations in the substrate. These correlations are well understood; they 
can be quantitatively described in terms of the language of multifractals or fractal 
measures (Mandelbrot 1974, Halsey et al 1986). Because of this, and because of the 
fact that these walks can easily be generated and the properties continuously varied, 
it is likely that this model will prove to be useful in exploring the properties of correlated 
walks. Here we have focused attention on the most simple ensemble-averaged proper- 
ties. It is likely that the distribution of properties within the ensemble will be quite 
different from those found in uncorrelated walks. For ordinary random walks the 
moments of the end-to-end distance are given by 

- 
R" - N"". (8) 

It is possible that a more general description will be needed for walks on multifractal 
substrates in which an infinite family of exponent v, will be needed, i.e. 

(9) 
Walks originating in regions of very high probability may tend to be localised in that 
region and have a high fractal dimensionality whereas walks originating in regions of 
low probability may tend to follow a path of lower dimensionality as they 'seek' regions 
of higher probability. This possibility will be explored in the near future. At present, 
random walks generated using the model described above are being used to extend 
the scope of the DLA model of Witten and Sander (1981). 

After this work had been completed, I learned that a similar one-dimensional 
model had recently been investigated analytically and using computer simulations by 
Weissman and Havlin (1987). 

- 
R" - N"".. 

The ideas and motivation for this work were developed during a CECAM (Centre 
EuropCen pour le Calcul Atomique et MolCculaire) workshop on multifractals and 
during a visit to the Institute of Physics, University of Oslo. I would like to thank J 
Feder and T Jossang for their hospitality and encouragement. 
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